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ABSTRACT

Motivation: DNA copy number aberration—both inherited and
sporadic—is a significant contributor to a variety of human diseases.
Copy number characterization is therefore an area of intense
research. Probe hybridization-based arrays are important tools used
to measure copy number in a high-throughput manner.
Results: In this article, we present a simple but powerful
nonparametric rank-based approach to detect deletions and gains
from raw array copy number measurements. We use three
different rank-based statistics to detect three separate molecular
phenomena—somatic lesions, germline deletions and germline
gains. The approach is robust and rigorously grounded in statistical
theory, thereby enabling the meaningful assignment of statistical
significance to each putative aberration. We demonstrate the
flexibility of our approach by applying it to data from three different
array platforms. We show that our method compares favorably
with established approaches by applying it to published well-
characterized samples. Power simulations demonstrate exquisite
sensitivity for array data of reasonable quality.
Conclusions: Our flexible rank-based framework is suitable for
multiple platforms including single nucleotide polymorphism arrays
and array comparative genomic hybridization, and can reliably detect
gains or losses of genomic DNA, whether inherited, de novo, or
somatic.
Availability: An R package RankCopy containing the methods
described here, and is freely available from the author’s web site
(http://mendel.gene.cwru.edu/laframboiselab/).
Contact: Thomas.LaFramboise@case.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
It has long been known that somatic amplification and deletion of
genomic DNA is a hallmark of cancer (Hanahan and Weinberg,
2000). These copy number aberrations represent an adaptive
solution exploited by tumors to circumvent normal growth control
mechanisms. The identification and high-resolution mapping of copy
number lesions in tumors is a central goal in cancer research,

∗To whom correspondence should be addressed.

since amplifications activate oncogenes and deletions eradicate
tumor suppressor genes. More recently, widespread copy number
variability was revealed in the human germline (Iafrate et al.,
2004; Sebat et al., 2004) in phenotypically normal individuals.
Copy number variants (CNVs) are now recognized as a major
source of human genetic variability, occupying a larger proportion
of the genome than even single nucleotide polymorphisms (SNPs)
(Levy et al., 2007). Their medical relevance, although not fully
understood, is underscored by a growing number of associations
with several human diseases (Fellermann et al., 2006; Hollox et al.,
2008; Rovelet-Lecrux et al., 2006; Weiss et al., 2008). Accurate
characterization of CNVs with regard to location, frequency and
correlation with other polymorphisms will help to elucidate their
clinical relevance.

High throughput SNP arrays (Kennedy et al., 2003; Steemers
et al., 2006) were originally designed for SNP genotyping. However,
these arrays are now, along with array comparative genomic
hybridization (aCGH) (Pinkel and Albertson, 2005), the primary
platforms used to detect somatic copy number aberrations (Peiffer
et al., 2006; Zhao et al., 2004) and CNVs (Korn et al., 2008; Wang
et al., 2007). Indeed, there is a plethora of methods available for
copy number aberration detection from SNP microarray data. Most
of these methods are specific to one particular platform (Chen et al.,
2005; Colella et al., 2007; Huang et al., 2006; LaFramboise et al.,
2007). Furthermore, they are usually designed to detect specifically
either somatic aberrations in tumors (Zhao et al., 2004) or CNVs in
germline DNA (Wang et al., 2007), but not both. Some methods are
only designed to detect deletions but not gains (Conrad et al., 2006;
Hinds et al., 2006; Kohler and Cutler, 2007; McCarroll et al., 2006).

The general principle behind all methods is that gains or losses
in copy number are manifested as increases or decreases in signal
intensity for the probes interrogating loci contained in the aberrant
region. Given the inherent noisiness of the data, it is often difficult
to distinguish between local copy number changes and random
fluctuations in the measurements. Furthermore, the relationship
between the intensity signal and the genomic copy number is not
always linear, and can vary widely due to total DNA dosage,
sequence-specific effects and other unknown factors. The researcher
can generally only expect that a gain in copy number will result in
an increase in median signal intensity, and that a deletion will result
in a decrease. A typical approach is to convert signal intensity into a
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measure of ‘raw’copy number, infer chromosomal segments that are
deemed to have the same true copy number, and then set thresholds
for calling gains and losses based on a summary measure of the raw
copy numbers of segment loci. Determining appropriate thresholds
can be problematic and are sometimes rather arbitrary. Furthermore,
if probe responsiveness to DNA dosage varies substantially in a
region, segmentation algorithms will have difficulty inferring the
region’s constant true copy number. A natural alternative approach
would be to rank the raw copy number measurements across a set
of samples to identify those with local enrichment in high or low
rank values. If each probe’s responsiveness is reasonably consistent
across samples, the raw copy number ranks should reflect the true
copy number ranks.

In this article, we present a nonparametric, rank-based method to
directly infer gains and losses from raw genome-wide copy number
measurements. Our approach is conceptually simple, yet statistically
robust. The underlying idea is that an individual harboring a copy
number aberration encompassing several consecutive array loci is
likely to have raw copy number measurements that rank very high
or very low among other samples for these loci. Copy number
aberrations can be inferred at runs of high or low ranks that
deviate in a statistically significant manner from what would be
expected under the null hypothesis of random fluctuation in ranks.
The method considers measured copy number only relative to the
other samples, and can therefore accommodate probes with varying
levels of responsiveness (Fig. 1). Furthermore, comparison with the
null distributions of rank-based statistics enables the assignment of
meaningful P-values to each putative aberration, thereby allowing
prioritization for follow-up studies. Noise in the raw measurements
will only decrease power to detect aberrations, but will not increase
the likelihood of false positive calls. The simplicity of our method
makes it very flexible. It can be applied to data from any array
platform that produces signal intensity as a measure of copy number,
including aCGH and commercially manufactured SNP arrays. The
method can be used to detect somatic changes in cancer samples, as
well as germline gains and losses. Each of these scenarios naturally
suggests its own rank-based statistic and a corresponding statistical
test, as we describe in this article.

We demonstrate the sensitivity of these rank-based tests for
different biological settings, using three different platforms. First,
we accurately detect somatic deletions and amplifications in a set
of well-characterized lung cancer cell lines from Affymetrix 250K
array data. Second, we perform an in silico replication of the
discovery of de novo duplications and deletions in autism patients
from a recent Affymetrix 500K array study (Marshall et al., 2008).
Third, we analyze previously published aCGH data and replicate, at
a very high level of significance, CNVs discovered in schizophrenia
patients. The performance of our algorithm compares favorably with
widely used software packages, and power simulations demonstrate
the applicability of our method for data with varying quality and
resolution. An R (R Development Core Team, 2007) software
package containing the methods is freely available from the author’s
web site (http://mendel.gene.cwru.edu/laframboiselab/).

2 METHODS
For an overview of the computational procedure, see Supplementary
Methods. The details are given in this section. In general, consider a study
with N samples. For now we restrict attention to a single window of raw copy

Fig. 1. Motivation for rank-based copy number aberration detection. The
top panel shows 10 consecutive raw copy number measurements from the
Affymetrix 500K array for 15 autism patients samples (Marshall et al., 2008).
Sample MM0109-003 (dashed line) does not clearly and consistently indicate
raw copy number obviously different from the other samples. However,
it consistently ranks in the top three (usually at the top) among the 15
samples. Note that although probe responsiveness varies widely, there is
some consistency across samples. In the heatmap rank view (bottom panel),
this sample clearly stands out from the others, and is highly statistically
significantly enriched in high ranks. The value of the rank sum statistic is
given on the right. The P-value associated with the maxRS (see Section
2) statistic in this window (corresponding to MM0109-003) is 4.16 × 10−5

when the ranking is performed across all 307 samples (only 15 are shown
here for clarity).

number measurements, from markers 1 to K along a chromosome. At each
of the K markers, we convert the N measurements into ranks from 1 to N .
Our rank data in the window therefore consist of a K × N matrix R whose
(k, n) entry rkn is the rank of sample n at marker k. Under the null hypothesis
of copy number two for all samples, with random variation in measurement
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noise, the rows of the rank matrix are random permutations of the set of
integers from 1 to N . Let Rn, n = 1 … N denote the matrix column sums.
We propose tests for three distinct molecular phenomena, each suggesting a
separate alternative hypothesis and corresponding rank-based test statistic.
The three underlying statistics are the rank sum, the minimum rank sum and
the maximum rank sum.

2.1 Amplifications and deletions in cancer
When interrogating the cancer genome for copy number lesions, one typically
compares the test sample’s array data to that from a panel of normal reference
DNA. The latter is meant to represent the ‘copy number two’ signal. In the
rank matrix R, let the first sample be our test cancer sample, and let samples 2
through N correspond to the reference DNA. Under the alternative hypothesis
of a copy number lesion in the window of K measurements, we would expect
the first column of R to be enriched in low (in the case of a deletion) or high
(in the case of an amplification) ranks. Therefore, we adopt the rank sum
statistic

RS =R1 =
K∑

k=1

rk1,

whose asymptotic null distribution is derived in the Supplementary Methods.
The statistical test for aberration is two-sided, with significantly large values
of RS giving evidence for amplification and significantly small values of RS
evidence for deletions.

2.2 CNV detection
A germline gain or deletion harbored by one of the N samples will result in
an enrichment of high or low ranks, respectively, for that sample. In contrast
to the somatic lesion situation, the investigator does not typically have any a
priori expectations as to which samples, if any, harbor a CNV in the region.
As such, we propose the minimum rank sum

minRS =min
n

Rn

and maximum rank sum
maxRS =max

n
Rn

as test statistics for deviation from the null hypothesis. The asymptotic
null distribution for both of these statistics is derived in the Supplementary
Methods. Statistically significant minRS and maxRS statistics will implicate
the corresponding sample(s) as harboring a CNV. It is important to note that
more than one sample in a dataset may harbor a deletion or gain of the same
region. Therefore, we apply each test recursively in the window, removing
at each stage the sample with the minimum (respectively, maximum) rank
sum, recomputing the ranks, and then recomputing the minRS (respectively,
maxRS) statistic and corresponding nominal P-value. In this way, we are
able to detect loss or gain in multiple samples for the same region.

2.3 Applying the tests genome wide
In most instances, a genome-wide scan for copy number aberrations is
desired. In such cases, we apply our tests in sliding windows of K markers
across the genome. The window size depends upon the marker density of the
platform, as well as the expected lesion size (see Section 4). This results in
an enormous number of tests that must be accounted for in order to control
false discoveries. Complicating matters is the fact that the tests are highly
correlated in a nontrivial manner because of the sliding window. As noted
above, under the null hypothesis the rows of the rank matrix are random
permutations of the set of integers from 1 to N .As such, the null rank matrix is
straightforward to simulate, and the test statistics may be applied in a sliding
window to generate a genome-wide null distribution. However, despite
careful normalization, it may be the case that one array gives systematically
higher or lower raw copy number measurements, regardless of the true

Fig. 2. Calling CNV regions from rank data. Array CGH data generated
from sample 3108 in a schizophrenia study (Kirov et al., 2008) is shown for
a 2 Mb region on chromosome 2. Raw copy number (solid line, left axis) is
plotted along with the nominal significance level (dashed line, right axis),
probe-by-probe. The points on the raw copy number plot are labeled with
the copy number’s rank among 87 samples. The points on the P-value plot
are labeled with the value of the minRS statistic, the sum of the ranks in the
four-marker window straddling the locus. This RS statistic determines the
nominal P-value. The final called deletion for our method is indicated by the
horizontal line segment at top.

underlying copy number. This would result in a bias toward low or high
ranks, yielding false copy number aberration calls. To ameliorate this effect,
we estimate the null distribution by permuting the rows of the actual data
rank matrix R multiple times, thereby destroying any local enrichment in
high or low ranks from CNVs. The null distribution for each test statistic
is computed for each sample separately using the permutated data, thereby
controlling for systematic biases in probe intensity for specific sample arrays.

2.4 Multiple test correction
In the last several years, high-dimensional data output and the corresponding
multiple testing issues have led researchers to control for the false discovery
rate (FDR) (Benjamini and Hochberg, 1995) using the q-value (Storey and
Tibshirani, 2003) rather than controlling the nominal false positive rate
using the P-value. In our study, we estimate the FDR on a sample-by-
sample basis as follows. Given a nominal P-value threshold θ for calling a
putatively aberrant region significant, the number of expected false positives
f is the average number of regions from the null distribution with nominal
P-values below θ . The number of discoveries d is the number of regions
in the actual data with nominal P-values below θ . Our estimated FDR (as
a function of θ ) is therefore f /d. The q-value of each putatively aberrant
region is the estimated FDR if that region’s nominal P-value were used as
the value for θ .

The above definition relies on the notion of CNV regions, which are
determined as follows. First, all windows whose P-values fall below θ are
automatically designated as being part of CNV regions. The called CNV
region is extended in each direction until the marker rank falls below the top
(for losses) or bottom (for gains) 5% ranks. Finally, two CNV regions (of
the same type—gain or loss) are merged if they are close to one another (our
software default sets this at five markers or less). Figure 2 gives a specific
example of a deletion region called from aCGH data.

2.5 Extracting raw copy number measurements
Each of the three platforms considered here produces a measure of raw
copy number at each genomic locus that it interrogates. To satisfy the
underlying null assumptions of our method, in copy number two regions these
measurements should be: (i) independent from marker to marker; and (ii)
comparable across samples for the same marker. Formally, these conditions
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imply that, for samples n1 and n2 with copy number two in the entire window,

P[r(k+1)n1 >r(k+1)n2 |rkn1 >rkn2 ]=P[r(k+1)n1 >r(k+1)n2 ]≈0.5

for all k = 1, …, K −1. To ensure that these conditions are satisfied as closely
as possible, data from each array platform must be processed appropriately.

Preprocessing and raw copy number inference for each platform was
performed as follows.

For the Affymetrix 500K arrays, we applied the PLASQ algorithm
(LaFramboise et al., 2007) to extract raw copy number measurements at
each autosomal SNP on the array. The quantile normalization procedure
(Bolstad et al., 2003) (itself a rank-based method) allows us to compare
the measurements across samples. However, the Affymetrix protocol
(Affymetrix, 2006) calls for DNA digestion with restriction enzymes, and
some restriction fragments harbor more than one SNP represented on the
array. This will necessarily result in a dependence between measurements at
SNPs on the same fragment, since their copy numbers will be the same
following the digest and PCR step. To avoid such a redundancy which
violates the independence assumption above, we restrict our attention to one
SNP per restriction fragment in all subsequent analyses. This leaves 193 123
autosomal SNPs on the 250K platform and 404 937 for the 500K set.

For the array CGH platform, the normalized log2 ratio was generated
for each probe/sample using CGHpro (Chen et al., 2005). No background
subtraction was applied. All clones with missing values in >10% of the
samples were omitted from downstream analysis. In the sample set that we
used, this left 21 034 of the initial 32 446 probes.

2.6 Simulating data under the alternative hypothesis
In the rank-based framework, a deletion or gain call in a sample is solely
determined by its raw copy number measure relative to other samples. The
power is optimal when raw copy number measure is a strictly monotonic
function of actual copy number. That is, if ckn denotes the true copy number
of sample n at marker k, ideally

rkn1 <rkn2 wheneverckn1 <ckn2 .

In practice, this is not always the case, and deviations from such monotonicity
may be captured by a single parameter

ρ =P[rkn1 >rkn2 |ckn1 <ckn2 ],
with ρ = 0 being optimal and ρ = 0.5 being the worst case of a completely
noninformative raw copy number measure. Given this parameter, it is
straightforward to simulate a vector of ranks for N samples, where N1

harbor a deletion and N2 are copy number two (N1 +N2 =N) as follows. We
simulate raw copy number measurements from the deleted N1 samples with
random draws from a continuous uniformly distributed variable U ∼ U(0,1)
on the unit interval. The remaining N2 raw copy number measurements are
simulated by drawing from the continuous uniform distribution V ∼ U(1-
2ρ, 1) on the interval [1-2ρ, 1]. It can be easily shown that P[U > V ] = ρ

as desired. In this way, we may simulate deletions for given values of ρ, N1,
N2, K , lesion size and number of loci interrogated by the array by repeatedly
drawing from these distributions and converting the results into ranks.

2.7 Comparison with DNAcopy and GLAD
For comparison purposes, we downloaded both DNAcopy, which
implements circular binary segmentation (Venkantraman and Olshen, 2007)
and GLAD (Hupé et al., 2004) from Bioconductor (www.bioconductor.org)
and applied them to the raw copy numbers using default parameters. Both
algorithms infer contiguous regions whose true copy number is deemed to
be constant. The raw copy number for a segment is reported by DNAcopy as
the mean for all markers in the segment, and by GLAD as the median. For
each region reported in Tables 1–3 below, we determined the segment with
the lowest (for reported losses) and highest (for reported gains) raw copy
number value that overlaps the region.

Table 1. Detection of somatic lesions in cancer

Sample Chr Start(Mb)a Stop(Mb)a RT–PCR copy

numbera
Sample

size

RSb P-valueb

H2122 2 141.71 142.45 0.01 29 17 1.64×10−12

HCC95 2 141.79 142.78 0 31 10 <10−16

H157 2 142 142.2 0.06 18 80 0.34

HCC95 3 60.29 60.78 0 31 10 <10−16

HCC827 7 53.16 61.49 41.66 18 180 <10−16

HCC827 8 127.46 128.89 8.63 18 180 <10−16

NCI-H23 8 127.59 130.83 11.11 31 310 <10−16

H2122 8 127.9 129.62 14.49 29 289 <10−16

H2087 8 128.44 129.6 15.99 28 280 <10−16

H358 9 8.79 9.55 0 29 10 <10−16

HCC1171 9 9.41 9.61 0.08 29 17 <10−16

H2347 9 9.5 9.75 0 29 34 1.18 ×10−7

H2126 9 20.9 22.94 0 18 10 <10−16

HCC1171 9 21.58 25.1 0 29 10 <10−16

H2882 9 21.7 23.39 0 29 10 <10−16

HCC95 9 21.84 26.83 0 31 10 <10−16

H2122 9 21.95 22.09 0.01 29 11 <10−16

H157 9 24.34 24.7 0.03 18 13 6.57×10−12

H2087 12 32.69 36.59 11.43 28 280 <10−16

H2087 12 56.26 57.37 23.4 28 280 <10−16

H1819 22 16.99 20.31 12.57 29 290 <10−16

HCC515 22 17.51 21.44 14.01 29 290 <10−16

aFrom Zhao et al. (2005).
bUsing most significant overlapping 10-SNPs window.

Table 2. Detection of de novo CNVs in autism patients

Samplea Chra Starta Stopa CNVa RSb P-valueb

SK0306-004 2 186674000 186771130 Loss 110 2.02x10−10

SK0152-003 3 15125800 16535400 Loss 17 <10−16

SK0152-003 5 9275811 12705200 Loss 22 <10−16

SK0083-003 7 108200381 119223887 Loss 16 <10−16

SK0131-003 7 113335000 128821721 Loss 13 <10−16

NA0002-000 7 153585000 153651462 Loss 86 <10−16

SK0152-003 12 40584198 41007040 Loss 30 <10−16

SK0243-003 15 69601300 73890800 Loss 14 <10−16

SK0245-005 15 18427100 30298847 Gain 3068 <10−16

MM0088-003 16 29559989 30235818 Loss 87 <10−16

NA0067-000 16 87800593 88066260 Loss 117 1.71x10−9

SK0218-003 18 55756601 76115600 Loss 14 <10−16

MM0109-003 20 60949339 62377000 Gain 2785 4.16x10−5

SK0244-003 21 42974148 43328084 Gain 2973 7.40x10−10

SK0119-003 22 17014900 19786200 Loss 24 <10−16

SK0297-003 22 17265500 21546762 gain 3031 <10−16

MM0109-003 22 49243247 49519949 loss 44 <10−16

aFrom Marshall et al. (2008).
bUsing most significant overlapping 10-SNPs window.

3 RESULTS

3.1 Calling somatic lesions in cancer cells
DNA from each of 13 lung cancer cell lines—H2122, HCC95, H157,
H2882, HCC827, NCI-H23, H2087, H358, HCC1171, H2347,
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Table 3. CNV detection from array CGH data

Sample Chr Start(Mb)a Stop(Mb)a CNVa RSb P-valueb

3108 2 51.1 51.35 Deletion 8 1.7x10−5

2207 3 140.25 140.85 Gain 346 1.1x10−6

4114 4 189.86 190.5 Gain 347 6.6x10−8

1317 6 41.39 41.6 Gain 346 1.1x10−6

4263 15 27 28.4 Gain 348 <10−16

4203 15 92.01 92.5 Gain 348 <10−16

3363 16 21.92 22.32 Deletion 41 0.17

3381 17 48.31 48.67 Deletion 8 <10−16

3268 22 23.25 24.16 Gain 348 <10−16

aFrom Kirov et al. (2008).
bUsing most significant overlapping four-probe window.

H2126, H1819 and HCC515—was run on the 250K (StyI) chip,
along with array data from normal reference DNA. Each sample
was part of a batch of 96 samples that were processed as a single
plate, and all arrays were run at the same core facility at the Broad
Institute of Harvard and MIT (Cambridge, MA, USA). Each of the
13 cell lines was characterized in an earlier study (Zhao et al., 2005)
in which a total of 22 of their lesions were validated with qPCR. To
assess the sensitivity of our method we applied it, genome-wide, to
the raw copy number data. Each sample was ranked with all normal
DNA samples run on the same 96-well plate, giving N= 18, 28, 29 or
31, depending upon the batch. The rank sum statistic RS (see Section
2) was computed, using a 10-SNP sliding window (K =10) across
the entire genome. Table 1 shows the results of our nonparametric
rank sum test for all qPCR-validated lesions from the Zhao et al.
(2005) study. The power of our approach is demonstrated by its
ability to detect all but one of these 22 known lesions at extremely
high levels of significance. The sole lesion that we did not detect—a
reported homozygous deletion on chromosome 2 in the H157 cell
line—could have been missed for a variety of reasons. It is possible
that the boundaries of the deletion were not accurately described in
the Zhao et al. study, and actually harbors too few 250K array SNPs
to be detectable from the array data. Alternatively, the explanation
could be a deficiency in our algorithm, or even a false positive PCR
result. In any case, our rank-based approach clearly has a high level
of sensitivity for the detection of somatic copy number lesions in
cancer.

3.2 De novo events in autism patients
To show the applicability of our method in studies of specific
disorders, we attempted to replicate a study (Marshall et al.,
2008) that uncovered several de novo gains and losses in autism
patients. The data from that study consists of 307 probands
whose DNA was run on the Affymetrix 500K array platform. We
downloaded the raw data (.cel) files from the GEO DataSets web site
(http://www.ncbi.nlm.nih.gov/geo), and we processed and ranked
all 307 samples together, using the same 12 (unaffected) reference
samples to fit model parameters. We reasoned that we should be able
to identify (with a high level of statistical significance) the CNVs
reported in the autism study. We proceeded agnostically, scanning
the entire genomes of all 307 autism patients and applying the minRS
and maxRS statistics in a sliding window of 10 SNPs. The original
study discovered 17 de novo autosomal gains and losses among the

307 individuals. Table 2 shows that our approach was indeed able to
detect all of these variants at a very high level of significance. That
is, had the authors of that study used our rank-based approach, they
would have missed none of the de novo events that they reported.

3.3 Array CGH
Encouraged by the results from SNP arrays, we sought to determine
whether our approach would be equally applicable to aCGH data.
Although the platforms differ, the principle behind the downstream
data analysis is the same—genomically consecutive increases or
decreases in probe intensity provide evidence for a gain or deletion,
respectively. A recent study (Kirov et al., 2008) of schizophrenia
patients reported several CNVs that were classified as likely to
be pathogenic. We obtained the aCGH data from the authors of
the study for 87 of the patients, who harbored 10 of the study’s
reported CNVs. Of the 10, 1 reported CNV intersected with only
2 of the CGH probes remaining after our filtering step, and was
omitted from the downstream analysis. Owing to the much lower
density of the platform (tens of thousands of markers rather than
hundreds of thousands), we used a smaller window size of K = 4.
We were able to detect, with an extremely high level of significance,
all but one of the nine CNVs (Table 3). Interestingly, upon closer
inspection of the rank matrix, the deletion that went undetected by
our method had the lowest log2 ratio value (rank = 1) for four of the
five probes overlapping with the reported CNV. The nonconcordant
probe has a large enough rank (48) to diminish the significance of
the rank sum value. This is likely either the result of a faulty probe
or an architecturally complex CNV of the sort that has recently been
revealed on a large scale (Perry et al., 2008).

3.4 Comparison with segmentation methods
To compare the performance of our method with currently used
approaches, we applied two popular segmentation algorithms—
DNAcopy (Venkantraman and Olshen, 2007) and GLAD (Hupé
et al., 2004)—to the data analyzed in Tables 1–3. These methods
break the genome into inferred segments of constant copy number.
The algorithms report an average copy number for each segment.
One drawback to the segmentation methods is that the user must
decide the thresholds above and below which a segment can be
called duplicated or deleted, respectively. (In contrast, our method
reports P-values which can be used to prioritize regions for follow-
up.) In assessing the performance of DNAcopy and GLAD, we
report the overlapping segments are most concordant with the
reported aberration (gain or loss) in Tables 1–3. The results are
shown in Supplementary Figure 1. If 2.5 and 1.5 are used for gain
and loss thresholds, respectively (i.e. segment raw copy number is
rounded to the nearest integer), the performance of the segmentation
methods varies across datasets. In the cancer dataset (Table 1),
both algorithms are able to call the same regions as our method,
but miss the same deletion that ours does. Our method seems to
slightly outperform both methods in the autism data (Table 2), as
both DNAcopy and GLAD are unable to detect one of the reported
gains, including that shown in Figure 1. For the aCGH dataset (Table
3), GLAD misses three reported deletions (including that shown in
Fig. 2) and DNAcopy misses one.

Based on these results, our method seems to represent a modest
improvement over these segmentation methods. Furthermore, the
straightforward nonparametric nature of our method eliminates the
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need for models that must be fit using iterative procedures such
as expectation–maximization, which can be rather computationally
intensive. For example, to process one batch (eight samples) of the
cancer samples from the raw copy numbers, DNAcopy takes 1.85 h
on an Apple G5 processor with 4 Gb of RAM, while GLAD takes
4.08 h. As expected, our nonparametric approach is much faster,
only requiring 0.59 h. We note that most of this time involves
converting the raw copy numbers to ranks, since memory issues
with R necessitate processing the arrays in chunks.

3.5 Power simulations
The power of our method to detect a copy number aberration in
a sample is dependent upon several factors. These include sample
size, aberration size, window size K and the parameter ρ, which is
a measure of probe fidelity (see Section 2). We simulated deletions
under a range of values for each of these parameters, and applied
our method to the data (Supplementary Figs 2 and 3). For each set of
parameters, we simulated the deletion 1000 times, and considered
the deletion to be detected if the P-value would lead to two or
fewer false positives (as discovered in the null permutation data)
when using that P-value as the significance threshold. Note that our
procedures for gain and loss detection are completely symmetric,
and therefore we did not perform a separate power study for gains.
The power analysis shows that our method is quite sensitive for
reasonably high-quality array data (as measured by ρ). Indeed, the
procedure seems to be less affected by sample size as by ρ and
the size of the lesion. The poor performance (regardless of sample
size) for lesions smaller than the window size indicates that the
choice of window size K is an important practical consideration.
The algorithm will have difficulty detecting aberrations smaller than
the chosen window size.

4 DISCUSSION
We have described a new rank-based framework for the detection
of copy number aberrations from raw microarray data. The idea
of using the continuous raw copy number measure as a genotype
proxy (rather than discretizing the measure into integral values)
has been proposed by others (McCarroll and Altshuler, 2007), and
implemented in family-based tests (Ionita-Laza et al., 2008). The
method proposed in this article also works from the raw copy
number data, and ‘draws strength’ across samples to query for local
enrichment in low or high ranks. Although rank-based methods
have been applied to data from expression array data (Réme et al.,
2008) and chromatin immunoprecipitation on chip data (Ghosh et
al., 2006), this is the first study to use ranks across samples to infer
copy number aberrations.

The proposed approach has some drawbacks. The power study
showed difficulty in detecting CNVs smaller than the window size.
Although we adopted a 10-SNP window size for SNP arrays and
a 4-SNP window for aCGH, the method is flexible enough to
allow researchers to choose smaller window sizes (to detect smaller
CNVs). Smaller windows may lead to a decrease in power to detect
larger aberrations, however, owing to the shorter tails of the null
distribution for smaller values of K . Thus, we recommend that
users choose window sizes that are no larger than the sizes of the
aberrations they hope to reveal, and then gradually increase window
size to capture larger aberrations. The relationship between power

and window size is reflected in the relatively higher P-values for
the aCGH data (window size 4) as compared with those for the
other datasets (window size 10). A second potential drawback is that
extremely common CNVs may be difficult to detect. For example,
if many samples harbor the same deletion, then the individual
with the lowest raw copy number measurement may vary from
locus to locus in the region, thereby decreasing the power of the
minimum rank sum test to detect the aberration. In such a case, an
alternative approach would be to test for subgroups of individuals
with locally correlated raw copy number measurements. An ideal
nonparametric statistic for such a test is Kendall’s coefficient of
concordance W (Kendall, 1970). This statistic measures deviation
from independence of rankings from locus to locus.

In the rank-based framework, missing values present a problem
in that a marker with a missing raw copy number in one sample can
affect the ranks of all of the other samples. Therefore, we have taken
the conservative approach of assigning a ‘null’ raw copy number
two to any missing data point. While this admittedly will have a
modest negative impact on power to detect aberrations, alternative
approaches may inflate significance, which we aim to avoid.

Finally, we note that the rank-based framework can be extended to
other situations beyond those that are presented here. For example,
a natural approach in case–control situations would be to apply
the Wilcoxon Rank Sum test (Lehmann, 1975) to detect raw copy
number differences in the case and control groups. Regardless of
the statistic used, the general framework can be easily adapted to
other platforms. This will be important as high-resolution arrays are
developed with more markers per Mb, which will lead to an even
better performance for the proposed rank-based approach.
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